Tetrahedron Letters, Vol.24, No.5, pp 535-536, 1983 0040-4039/83/050535-02\$03.00/0 Printed in Great Britain ©1983 Pergamon Press Ltd.

> A HIGHLY CONVENIENT PROCEDURE FOR THE HYDROLYSIS OF TERMINAL PHENYL VINYL SULFIDES * Vichai Reutrakul and Patcharin Poochaivatananon Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

<u>ABSTRACT</u>: Terminal vinyl and chlorovinyl sulfides are hydrolyzed by 70% perchloric acid-thiophenol in benzene to the corresponding diphenyl thioacetals and thioesters in good yields.

Vinyl sulfides are very important class of compounds due to their versatility in organic synthesis¹. Numerous methods are available for the hydrolysis of vinyl sulfides¹ $\underline{1}$ (R = alkyl or aryl) but few methods are available for the hydrolysis of the vinyl sulfides² where R = H or Cl.

These terminal vinyl sulfides, in general, are quite difficult to hydrolyzed and the method of choice, so far, seems to be that reported by Cohen <u>et.al</u>.^{2a} in which a combination of hydrogen chloride gas and thiophenol in benzene was employed.

In connection to our program to utilize vinyl sulfides and chlorovinyl sulfides in synthesis, we have developed a convenient method for the hydrolysis of vinyl sulfides $\underline{1}$ (R = H, Cl) The process involves the combination of thiophenol in benzene in the presence 70% perchloric acid or trifluoroacetic acid. We have found that the most convenient and the easiest to handle acid is 70% perchloric acid. Our results are summerized in Table I.

IADIE I	Ta	Ь	1	e	Ι
---------	----	---	---	---	---

Entry	Vinyl sulfides	Products: Yields % (method) ^a
1	SPh H	SPh SPh 60(1); 67(2); 67(3)
2	MeO - CH=CH-SPh	Me0 $-$ CH ₂ -CH SPh 87(1)
3	CT SPh	$\bigcup_{c-SPh}^{0} 60(1); 4(2); 0(3)^{b}$
4	CH ₃ (CH ₂) ₆ CH=C CH ₃ (CH ₂) ₁₀ CH=C C1 CH ₃ (CH ₂) ₁₀ CH=C SPh	$CH_3(CH_2)_6CH_2C-SPh$ 66(1); 64(2) $CH_3(CH_2)_{10}CH_2C-SPh$ 62(1)
5	сн ₃ (сн ₂) ₁₀ сн≈с< ^{С1} SPh	СH ₃ (CH ₂) ₁₀ CH ₂ C-SPh 62(1)
6	MeO - CH=C < C1 SPh	Me0 $ CH_2^{0}$ C-SPh 76(1) ^c

Entry	Vinyl sulfides	Products : Yields (method) ^a	
7	OMe CH=CH C1 SPh	$\underbrace{\overset{\text{OMe}}{\underset{C1}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{$	

^a Method 1, The reaction was carried out with thiophenol (2 equiv.) and 70% perchloric acid (6 equiv.) in benzene at room temperature (RT) for 3 minutes.

- The reaction conditions were thiophenol (2 equiv.) and trifluoroacetic acid
 (2 equiv.) in benzene at RT for 10 minutes.
- A mixture of hydrogen chloride gas and thiophenol (1 equiv.) in benzene at RT for 10 minutes was employed.
- ^b All starting material was recovered.

^c Reaction time was 4 hours.

In the case of thioester formation, prolonged reaction time led to the formation of the corresponding carboxylic acid . For example, in entry 3, when **t**he reaction time was prolonged to 4 hr., cyclohexanecarboxylic acid was isolated in 40% yield together with 20% yield of the thioester. The thioesters could be converted to the corresponding methyl esters in 70-80% yield by stirring overnight in anhydrous methanol and a catalytic amount of concentrated sulfuric acid³.

Our hydrolytic procedure provides a convenient entry to thioesters which are of considerable synthetic interest⁴. In view of the fact that the relatively mild conditions were required in our reactions, this method should be applicable to the hydrolysis of various terminal vinyl sulfides.

References

- 1. B.T. Grobel and D. Seebach, Synthesis, 357 (1977).
- a) A.J. Mura Jr., G. Majetich, P.A. Grieco and T. Cohen, <u>Tetrahedron Lett</u>., 4437 (1975);
 b) C.C. Fortes, H.C. Fortes and D.C.R.G. Gonclaves, <u>J.Chem.Soc.Chem.Commun.</u>, 857 (1982).
- For methods of S → 0 ester conversion see: a) S. Masamune, Y. Hayase, W. Schilling, W.K. Chan and G.S. Bates, <u>J.Am.Chem.Soc</u>., <u>99</u>, 5756 (1977); b) S. Masamune, <u>Aldrichimica Acta</u>, <u>11</u>, 23 (1978) and references cited therein.
- 4. a) K.C. Nicolaou, <u>Tetrahedron</u>, <u>33</u>, 683 (1977); b) T.G. Back, <u>ibid.</u>, <u>33</u>, 3041 (1977);
 c) S. Masamune, G.S. Bates and J.W. Corcoran, <u>Angew.Chem.Int.Ed.Engl</u>. <u>16</u>, 585 (1977);
 d) T. Imamoto, M. Kodera and M. Yokoyama, <u>Synthesis</u>, 134 (1982) and references cited therein. (Received in UK 22 November 1982)